Hadoop Admin Courses in Bangalore



Indras Academy is the Market Leader in Artificial intelligence training in Bangalore Marathahalli. Artificial Intelligence is going to be the next big thing in the tech field and an incredible number of organizations are adopting AI and the demand for professionals knowledgeable in AI is increasing at an amazing rate! Artificial Intelligence course by Indras Academy will provide you with a broad understanding of the concepts of Artificial Intelligence to beginners.

In this course, you will learn to apply mathematical ideas in machine learning. You will explore the process of learning and understand the application of various learning algorithms.The complete AI course content is designed by industry professionals to get the best jobs in the top MNCs. As part of this Artificial Intelligence training, you will be working on real-time projects and assignments that have enormous implications in the real-world industry scenario, therefore, helping you boost your career effortlessly. AI Certification will be awarded to the candidates by the end of Courses Don’t get left behind – Start with Indras Academy - grab the wonderful opportunities. Learn Artificial Intelligence Course today!

  • Hadoop Overview, Architecture Considerations, Infrastructure, Platforms and Automation
  • Use case walkthrough
  • ETL
  • Log Analytics
  • Real Time Analytics
  • NoSQL Introduction
  • Traditional RDBMS approach
  • NoSQL introduction
  • Hadoop & Hbase positioning
  • Hbase Introduction
  • What it is, what it is not, its history and common use-cases
  • Hbase Client Shell, exercise
  • Hbase Architecture
  • Building Components
  • Storage, B+ tree, Log Structured Merge Trees
  • Region Lifecycle
  • Read/Write Path
  • Hbase Schema Design
  • Introduction to hbase schema
  • Column Family, Rows, Cells, Cell timestamp
  • Deletes
  • Exercise - build a schema, load data, query data
  • Hbase Java API Exercises
  • Connection
  • CRUD API
  • Scan API
  • Filters
  • Counters
  • Hbase MapReduce
  • Hbase Bulk load
  • Hbase Operations, cluster management
  • Performance Tuning
  • Advanced Features
  • Exercise
  • Recap and Q&A
  • MapReduce for Developers
  • Traditional Systems / Why Big Data / Why Hadoop
  • Hadoop Basic Concepts/Fundamentals
  • Hadoop in the Enterprise
  • Where Hadoop Fits in the Enterprise
  • Review Use Cases
  • Architecture
  • Hadoop Architecture & Building Blocks
  • HDFS and MapReduce
  • Hadoop CLI
  • Walkthrough
  • Exercise
  • MapReduce Programming
  • Fundamentals
  • Anatomy of MapReduce Job Run
  • Job Monitoring, Scheduling
  • Sample Code Walk Through
  • Hadoop API Walk Through
  • Exercise
  • MapReduce Formats
  • Input Formats, Exercise
  • Output Formats, Exercise
  • Hadoop File Formats
  • MapReduce Algorithms
  • Walkthrough of 2-3 Algorithms
  • MapReduce Features
  • Counters, Exercise
  • Map Side Join, Exercise
  • Reduce Side Join, Exercise
  • Sorting, Exercise
  • Use Case A (Long Exercise)
  • Input Formats, Exercise
  • Output Formats, Exercise
  • MapReduce Testing
  • Hadoop Ecosystem
  • Oozie
  • Flume
  • Sqoop
  • Exercise 1 (Sqoop)
  • Streaming API
  • Exercise 2 (Streaming API)
  • Hcatalog
  • Zookeeper
  • HBase Introduction
  • Introduction
  • HBase Architecture
  • MapReduce Performance Tuning
  • Hadoop Fundamentals and Architecture
  • Why Hadoop, Hadoop Basics and Hadoop Architecture
  • HDFS and Map Reduce
  • Hadoop Ecosystems Overview
  • Hive
  • Hbase
  • ZooKeeper
  • Pig
  • Mahout
  • Flume
  • Sqoop
  • Oozie
  • Hardware and Software requirements
  • Hardware, Operating System and Other Software
  • Management Console
  • Deploy Hadoop ecosystem services
  • Hive
  • ZooKeeper
  • HBase
  • Administration
  • Pig
  • Mahout
  • Mysql
  • Setup Security
  • Enable Security Configure Users, Groups, Secure HDFS, MapReduce, HBase and Hive
  • Configuring User and Groups
  • Configuring Secure HDFS
  • Configuring Secure MapReduce
  • Configuring Secure HBase and Hive
  • Manage and Monitor your cluster
  • Command Line Interface
  • Troubleshooting your cluster
  • Hadoop Overview
  • Why Hadoop
  • Hadoop Basic Concepts
  • Hadoop Ecosystem MapReduce, Hadoop Streaming, Hive, Pig, Flume, Sqoop, Hbase, Oozie, Mahout
  • Where Hadoop fits in the Enterprise
  • Review use cases
  • Apache Hive & Pig for Developers
  • Big Data and the Distributed File System
  • MapReduce
  • Hive Introduction
  • Why Hive?
  • Compare vs SQL
  • Use Cases
  • Hive Architecture Building Blocks
  • Hive CLI and Language (Exercise)
  • HDFS Shell
  • Hive CLI
  • Data Types
  • Hive Cheat-Sheet
  • Data Definition Statements
  • Data Manipulation Statements
  • Select, Views, GroupBy, SortBy/DistributeBy/ClusterBy/OrderBy, Joins
  • Built-in Functions
  • Union, Sub Queries, Sampling, Explain
  • Hive Usecase implementation - (Exercise)
  • Use Case 1
  • Use Case 2
  • Best Practices
  • Advance Features
  • Transform and Map-Reduce Scripts
  • Custom UDF
  • UDTF
  • SerDe
  • Recap and Q&A
  • Pig Introduction
  • Position Pig in Hadoop ecosystem
  • Why Pig and not MapReduce
  • Simple example (slides) comparing Pig and MapReduce
  • Who is using Pig now and what are the main use cases
  • Pig Architecture
  • Discuss high level components of Pig
  • Pig Grunt - How to Start and Use
  • Pig Latin Programming
  • Data Types
  • Cheat sheet
  • Schema
  • Expressions
  • Commands and Exercise
  • Load, Store, Dump, Relational Operations,Foreach, Filter, Group, Order By, Distinct, Join,
  • Cogroup,Union, Cross, Limit, Sample, Parallel
  • Use Cases (working exercise)
  • Use Case 1
  • Use Case 2
  • Use Case 3 (compare pig and hive)
  • Advanced Features, UDFs
  • Mahout & Machine Learning
  • Mahout Overview
  • ahout Installation
  • Vector implementation and Operations (Hands-on exercise)
  • Matrix Implementation and Operations (Hands-on exercise)
  • Anatomy of a Machine Learning Application
  • Classification
  • Classification Workflow
  • Feature Extraction
  • Classification Techniques (Hands-on exercise)
  • Evaluation (Hands-on exercise)
  • Clustering
  • Use Cases
  • Clustering algorithms in Mahout
  • K-means clustering (Hands-on exercise)
  • Canopy clustering (Hands-on exercise)
  • Clustering
  • Mixture Models
  • Probabilistic Clustering Dirichlet (Hands-on exercise)
  • Latent Dirichlet Model (Hands-on exercise)
  • Evaluating and Improving Clustering quality (Hands-on exercise)
  • Distance Measures (Hands-on exercise)
  • Recommendation Systems
  • Overview of Recommendation Systems
  • Use cases
  • Types of Recommendation Systems
  • Collaborative Filtering (Hands-on exercise)
  • Recommendation System Evaluation (Hands-on exercise)
  • Similarity Measures
  • Architecture of Recommendation Systems
  • Wrap Up

Find US

GET IN TOUCH

OUR ADDRESS
No. 270, Sigma Arcade, 1st Floor, Near Tulasi theater, Marathahalli, Bangalore.
PHONE
+91 9739993935, 9739993934
HAVE ANY QUESTION
indrasacademy@gmail.com
SKYPE
royal.indra1

GET CONNECTED

* Required Field